Memristive crossbar array with applications in image processing
نویسندگان
چکیده
منابع مشابه
Nano crossbar array of Complementary Resistive Switches with nonlinear memristive characteristics
Emerging solid state memory devices based on different materials and volatility has been widely acknowledged like NVRAMs (or Memristor).Evolution of new solid state ionic conductors and in particular (Memristor) brought impetus to the creation of new domain of larger storage capabilities for the future electronic systems. The achievements of these emerging technologies are kind of encouraging w...
متن کاملArchitecting Low Power Crossbar-Based Memristive RAM
Crossbar-based memristive arrays are promising candidates for future high-density, low-power memories. Their structural simplicity allows them to be fabricated with pitches as small as 17 nm [6] and with projected reductions, according to the ITRS, to a few nanometers in the next decade [1]. A crossbar is particularly useful if two-terminal switching nano-devices with a nonlinear behavior are p...
متن کامل25-1: Pattern Classification with Memristive Crossbar Circuits
Neuromorphic pattern classifiers were implemented, for the first time, using transistor-free integrated crossbar circuits with bilayer metal-oxide memristors. 10×6and 10×8-crosspoint neuromorphic networks were trained in-situ using a Manhattan-Rule algorithm to separate a set of 3×3 binary images: into 3 classes using the batch-mode training, and into 4 classes using the stochastic-mode trainin...
متن کامل3D integration of planar crossbar memristive devices with CMOS substrate.
Planar memristive devices with bottom electrodes embedded into the substrates were integrated on top of CMOS substrates using nanoimprint lithography to implement hybrid circuits with a CMOL-like architecture. The planar geometry eliminated the mechanically and electrically weak parts, such as kinks in the top electrodes in a traditional crossbar structure, and allowed the use of thicker and th...
متن کامل2T1M-Based Double Memristive Crossbar Architecture for In-Memory Computing
The recent discovery of the memristor has renewed the interest for fast arithmetic operations via high-radix numeric systems. In this direction, a conceptual solution for high-radix memristive arithmetic logic units (ALUs) was recently published. The latter combines CMOS circuitry for data processing and a reconfigurable “segmented” crossbar memory block. In this paper we build upon such a conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Information Sciences
سال: 2011
ISSN: 1674-733X,1869-1919
DOI: 10.1007/s11432-011-4410-9